If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+1.7x-56=0
a = 4.9; b = 1.7; c = -56;
Δ = b2-4ac
Δ = 1.72-4·4.9·(-56)
Δ = 1100.49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.7)-\sqrt{1100.49}}{2*4.9}=\frac{-1.7-\sqrt{1100.49}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.7)+\sqrt{1100.49}}{2*4.9}=\frac{-1.7+\sqrt{1100.49}}{9.8} $
| -y/7+4=12 | | -1=5x^2-9 | | 20r=-20, | | –13=5(1+4x)-2x | | 8(-2+n)=-64 | | X+10-4t=-11 | | 7x+4+8x-9=x+3 | | -8(y-5)=5y+31 | | 7=k/9+6 | | 4(x-2)/2=2(x+2)/5 | | 4x/3=-24 | | -4=-(-1+b) | | 3(2x+x+25)=5(3x+3) | | 4/8b=68 | | (11y−6)2+25=0 | | 7=2d−9 | | 15(2x+2)=10(3x+2) | | 18x342=6165 | | 1/2*n+3/4=1 | | 7p+9p=-80 | | n+(-3)=-25/7 | | y−72/3=7 | | (8x-20)=(3x-1) | | 7z+3=3 | | 361/420=19x/90 | | 18=x342 | | -16t^2+208t=0 | | 6x/2-7=14 | | -265/69=-20/23b | | 8+3c=17 | | (7x-10)+(x+3)=9x-11 | | 0.20x+90=0.50x+60 |